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ABSTRACT

Boxer is an integrated computing environment for naïve computer users. It supports “what you
see is what. you have” both in the editor and in the semantics of the language: objects behave as
if they are their screen representations. This constraint and related guiding principles place strong
demands on the implementation.
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Chapter 1

Tnt ro ion

This paper describes the programming language portion of Boxer, an integrated computing
environment for naïve users. Boxer supports “what you see is what you have” both in the
editor and in the semantics of the language: objects behave as if they were their screen
representations. This constraint and related guiding principles place strong cleniands on
the implementation.

This paper describes the design and implementation of the programming language.
with particular emphasis on the efficient solutions to problems imposed by the design
constraints. It also discusses the principles underlying the programming language, the
resulting programming model, and its evolution.

Chapters Two, Three, and Four comprise a discussion of the language design issues.
presenting a view of the Boxer system as a whole, and showing the influence of high-level
design principles on the evolution of the language.

In Chapter Five, the emphasis shifts to language implementation issues. Chapter Five
gives an overview of the implementation of Boxer, shows how the evaluator which realizes
the lailguage fits in with the rest of the Boxer system. and explains features in the evaluator
that were dictated by the Boxer design principles. Chapters Six and Seven explores issues
of efficiency in the implementation of features described in Chapter Two through Four.
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Chapter 2

What Is Boxer?

Boxer is an integrated computing environment designed for naïve computer users. Boxer
was first developed at the MIT Educational Computing Group of the Laboratory for Com
puter Science, under the direction of Prof. Harold Abelson and Prof. Andrea ciSessa. Boxer•
is currently being developed at the U. C. Berkeley School of Education, in the Education
in Math, Science, and Technology program. under the direction of Prof. diSessa.

Boxer’s predecessor, or perhaps its godfather, is Logo; yet Boxer differs from Logo in
profound ways. Boxer is best explained by example.

2.1 A Simple Example

This section presents a sample Boxer world, containing some programs, some non-programs,
and some Logo-like turtle graphics.

The box is the basic unit of Boxer. There are two major kinds of boxes: DATA boxes
and DOlT boxes. DATA boxes contain text, graphics, and other boxes. DOlT boxes contain
program text and other DATA and DOlT boxes. The text within each bOX IS arrayed in rows.
with each character or box occupying one space in the row. Figure 2.1 shows a sample
Boxer screen. The initial box, called the Boxer world, is a DATA box which occupies the
entire screen.

Boxer uses the keyboard and mouse couuiiands to create text and boxes. For example.
the second arithmetic expression on the screen was made by typing 12 * (count + 3),
and the answer was obtained by pressing the doit (execute) key. The DOlT box containing
count + 3 was constructed by typing the parentheses, which serve to group the addition
expression the box contains as do parentheses in Logo or other programming languages.

Notice that both the whole expression and its result remain in place in the box. and do
not scroll away or otherwise disappear. Pressing the doit key again will execute the same
command once more.

The DATA box named count is a variable, whose value is 49.
The GRAPHICS is a special kind of DATA box that displays graphics information in

addition to text.
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WORLD I
This world contains

n jq’ ~

Some explanations
flATA

Some datal
flATA

A graphics box~
A TA

A short program~
OATA

some named, shrunken boxes
A TA

count I
49 I

A TA

12 * count

12 * Icount + 31

588
DATA

624
DATA

input side

repeat 4 I~orward side right 901

square 10 I

Microworids I Journal I Thesis I

DATA flATA DATA

flATA

Figure 2.1: A Sample Boxer World

square
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Below the G RAP IIICS box is a set of Boxer commands grouped together inside a DOlT
box and given a name; iii other words, it is a procedure named square. The row below
the DOlT box contains an invocation of the procedure. A Boxer user has just executed the
conuuancls on that row by placing the cursor there and pressing the doii key. The square
procedure has made the turtle in the graphics box draw a square on the screen, as a similar
procedure would in Logo.

Below the call to the turtle graphics procedure are three shrunken boxes. Each might
be a complicated world in its own right, containing many programs, much text and data,
and perhaps a number of sini.ilarly shrunken boxes constituting further divisions.

Let’s expand the box named Journal to the full screen size and examine its contents,
as shown in Figure 2.2.

The journal contains a number of entries, each in a separate DATA box. All of the
entries are shrunken, except for one. Notice that the entry box just surrounds the text
and an empty DATA box. Placing the cursor inside the empty box and typing will cause
1)0th that box and the surrounding box to expand in size automatically. Pressing the right
parenthesis key moves the cursor out of the box and back into the “Friday” box. Pressing
it again places the cursor just after the entry box, and pressing the parenthesis once more
will exit the Journal box and return it to its former, shrunken size. The screen will once
again look like Figure 2.1, with the cursor after the Journal box.

These static pictures cannot truly convey what it is like to use Boxer; the reader without
access to Boxer is referred to the video-tape presentation [25].

2.2 Further Examples

This section provides examples of some of Boxer’s features whose design and implementa
tion is discussed elsewhere in this thesis. It is not intended to be a complete introduction
to Boxer. The interested reader is referred to [10], [23], and the video-tape presentation
[25] for an introduction to other parts of Boxer.

Figure 2.2: The Journal box, expanded.
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count
10
~ ;;This_used to be 7 -

repeat 3 change count [count +

1~T~

Figure 2.3: The CHANGE conm~and alters variables.

Programs and Variables

Boxer has a simple rule for program evaluation, embodied in the phrase “copy and exe
cute.” The expression 12 * count which appears near the top of Figure 2.1 is a short
Boxer program. In this case, the meaning of “execute” is fairly clear: the normal rules of
arithmetic apply.

The treatment of the name count requires further explanation. It is here that the
“copy” comes in. The box named count is just that, a box named “count.” In other
words, it is a variable. The contents of the variable are the contents of the box. This
means that variables in Boxer are named DATA boxes. When the Boxer evaluator sees a
word that is the name of a variable in an expression, it finds the named box, makes a copy
of it. and replaces the word with the new box. The primitive comniand&are invoked when
all their inputs have been reduced to DATA boxes.

Finding a named box means starting outwards from the expression being executed and
looking for a box with the appropriate name. Named boxes, whether they are variables or
procedures, are accessible by name inside the box where the named box resides, and inside
any boxes inside that box.

CHANGE

The contents of variables may be changed with the CHANGE command. The CHANGE corn
rnancl takes two arguments: a box to change, and the new contents. It replaces the contents
of the box with a copy of the new contents.

As Figure 2.3 shows, the first argument to the CHANGE command may be a variable. By
the Boxer evaluation rules, the named box should be copied before the CHANGE operation
begins: hence it would appear to be be impossible to mutate any data under program
control! How can CHANGE possibly work? The answer is that CHANGE uses port-flavored in
puts. Two somewhat advanced Boxer concepts must he introduced to explain how CHANGE
works: ports, and flavored inputs. However, to use CHANGE, one need only see that it does
indeed work.

Ports

The port in Boxer is a special kind of box. It is a window or door to the contents of another
box. Ports provide for arbitrary connections to supplement the Boxer hierarchy. Thus.
ports are used to connect disparate sections of Boxer. For example. we might add to the

5



Figure 2.4: Placing the cursor in HERE-TOO and typing alters both port and target.

Journal box a box that would contain a series of ports to ciffereiit journal entry boxes,
organized in alphabetical order by subject. This new box would then form an index to the
journal.

Figure 2.4 shows a box and a port to that bOX. The black rectangle after the “z”
represents the cursor. The user has placed the cursor in the port, aiicl has changed the “s”
in “seven” to a “z.” The change in tlie port is immediately reflected in the original 1)OX.

Similarly, altering a port box tinder program control makes changes to the original
box. It is this ability which allows the CHANGE primitive to work. Ports can be made under
program control, using the PORT-TO command.

That the first input to CHANGE must he a port is only part of the answer to the puzzle.
The user does not normally use the PORT-TO command in conjunction with CHANGE; Boxer
creates the port automatically because the first input to CHANGE is port flavored.

Flavored Inputs

As described on page 5, the Boxer evaluator normally makes copies of Boxes that are
destined to become inputs to procedures and primitives. Boxer Provides a mechanism
for giving inputs a certain “flavor,” to indicate that the corresponding boxes should be
handled differently. When gathering a port-flavored input, the Boxer evaluator makes a
port to the box, instead of making a copy.

Figure 2.5 shows the ONE-PLUS procedure. Its input is not port flavored, and so calling
the procedure does not change the box, even though the ONE—PLUS procedure itself calls
CHANGE. There is no lasting effect because time input variable of ONE-PLUS is a copy of the
original 1)OX.

The similar INCREMENT takes a port-flavored input. When it alters the input with the
CHANGE command, the original box is affected because the local variable in the INCP.EMENT
procedure is a port to the original box, not a copy of it.

The simple TEST procedure in the Figure shows the DATAFY input flavor, which allows
words or DOlT boxes to be put in DATA boxes and passed as parameters to procedures.
The ® primitive (see Section 2.2) is time complementary de-reference operation, allowing
use of the word or DOlT box. In the figure. DATAFY is used simply to allow an unboxed
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Figure 2.5: Examples of PORT-TO, DATAFY and normal input flavors.

keyword-style argument.

BUILD

Boxer provides a rich set of primitive commands for operating on DATA boxes (and ports),
iiiclucing data predicates, selectors, mutators, and constructors. The standard Logo-like
operations on lists and arrays are generalized to operate on boxes, and are not described
here.

Unique to Boxer is a primitive which exploits the spatial metaphor for constructing
boxes. The BUILD command is a template-based constructor similar to the Lisp “back
quote” operator. BUILD takes one input (a template DATA box) and outputs a DATA box
which looks largely like a copy of the template. with the exception of expressions indicated
by the special characters “!“ aiid “c.”

When BUILD encounters an expression beginning with the ! character, it evaluates the
expression and uses the resulting box in place of the original expression in constructing
the BUILD output box. We refer to this character as the doit character.

The effect of the ~ character is like that of the ! character, except that the comtent.~ of
the resulting box are taken out of the box and inserted into the BUILD output box; we say
that the result of the expression is “un-boxed.

F increment]
one-plus

input port-to_data
change data [~ta +~j

input data
change data rdata + ill
data

test I
input datafy name
name

~flATJ ~&T~J
[2

X I IflATA

increment x
3x ___

one-plus y flATA

test x x
flATA



Figure 2.6: Some examples of BUILD.

Figure 2.6 shows some simple examples of BUILD.1

TELL

In addition to ports, Boxer provides another means for non-hierarchical access to data.
The TELL primitive evaluates- expressions inside distant boxes.

As Figure 2.7 shows, the result of TELL BOX1 CHANGE COUNT 3 is the same as that of
moving the cursor to the box BOX1 and evaluating the expression CHANGE COUNT 3. The
expression may also return a value; TELL can thus be used for accessing variables inside
other boxes.

Since TELL causes a change in the context in which expressions are evaluated, it may
not be possible for the distant expression to access the variables which are available to the
procedure which calls TELL.

The second argument to TELL is considerd to be “build-flavored,” so the ! character may
l)e used inside the second argument to indicate expressions which are to be evaluated in
the local environment, before the TELL operation takes place. Variable names not preceded
by an ! character are evaluated in the distant environment. In the figure, the value of the
amount variable is taken from the deposit procedure.

ri~i __

[rB __

flATA DATA DATA

BUILD nATAl

BUILD ______

IDATAI ~
DATA

A B C
DATA

Z !Z !XBUILD IDATA I

____ IDATAI C Dl

DATAI ~I DATA

BUILD
n Al’ A

‘This example is taken from [11].
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[bo~J
3
fl ATA

Consider the following sequence of commands: tell boxi count I IflATi
tell boxi change count 3

tell boxi count I [~~l
[~positj

inputs port-to account amount

tell account change balance [~lance + ! ainou~j]

{accou~~J ~ccount2

I balancejj [balance I
[100 I r5°
flATA j

______________ r)ATA

Again, examine the effect of these commands: tell account 1 balance I ____

deposit account 1 50

tell accounti balance I ____

flATA

Figure 2.7: Examples of the TELL command.
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The ~ primitive is an appropriation of the ~ character from the BUILD primitive. The
difference in the two uses of ~ is that, as a primitive command, ~ may appear directly in
lines of Boxer code. When Boxer encounters an Q character outside of a BUILD template, it
evaluates the following expression. removes the contents from the resulting box, and places
those contents on the line in place of the ~ and its following expression, to be executed
once more.

If the expression following the ~ evaluates to a DATA box containing exactly one DATA
box, then the effect of the ~ operation is to open up one level of box hierarchy (since
DATA boxes are self-evaluating). If the expression evaluates to a DATA box containing an
expression, then that expression will be evaluated.

If the expression instead evaluates to a DATA box containing only part of an expression.
then the remainder of the line will be used to complete the expression. Thus the Q character
can be used to access procedures (DolT boxes) which have been passed as arguments (inside
DATA boxes).

Figure 2.8 shows some examples of these uses of the ~ primitive.

Triggers

A trigger is a DOlT box which is associated with a box and which is run when a certain
thing happens to that box. There are three kinds of triggers: modification triggers, entry
triggers, and exit triggers. The modification trigger is run whenever the box is changed
directly by typing, or by a procedure. Entry and exit triggers, if present, are run whenever
the cursor enters or leaves a box.

Trigger procedures are DOlT boxes with special names. For example, the exit trigger
of a box is a DOlT box named exit-trigger. Triggers are generally placed in the bOX
closet, which is a hidden part of a box. The CHANGE operation does not affect items in the
box closet, and the items are not normally displayed. A special key opens the closet and
makes its contents visible.

One typical use of the entry and exit triggers is making an object in a GRAPHICS box
visible only while the cursor is in a particular box. The modification-trigger mechanism
is useful for enforcing constraints on the contents of several boxes. For example, consider
the Figure 2.2. which shows a spreadsheet-like program written in one line of Boxer code.
The code is the user formula, and is run when the contents of the boxes cliaiige.

This simple example is not a true spreadsheet. since there is a distinction between
inputs and outputs, and changing the outputs has no effect. However, a program which
did use constraint propagation to perform the calculations would have the same trigger
structure.

10



Figure 2.8: The various uses of the ~ primitive.

;; Simple uses of ~.

I~g _ __

x

z

;; Use of ~

SQUAR~J

input x
x * x~

to pass procedures

TEST5 I
input proc
~proc 5

as arguments.

TEST5

TEST5

SQUARE 125 I

______________ T~A1’A

input n
ii+1 16 I

DAI’A _______
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Figure 2.9: Automatic calculation. program using the modification—trigger feature.

update
change net-worth assets - liabilities

assets I liabilities I net-worth I
100.101 100.091 0.011

____________ nATA nATA

flATA

______ Figure 2.10: The assets 1)oX with its closet shown.

assets I
Closet .1.

modification-trigj

update

Closet I
100.10
flATA
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Chapter 3

The Goals and Principles Behind
Boxer

The previous chapter presented Boxer from the user’s point of view. This chapter discusses
the users for whom Boxer was designed, and how they are expected to use Boxer. It
describes the goals and principles which fostered the design and implementation of Boxer.

3.1 Who Is Boxer For?

Boxer is for naïve computer users. Whereas Logo was targeted at users of elementary school
age and older, Boxer was designed with bthe assumption that the majority of people who
could profitably use it would he at least ten to twelve years old.

Naïve computer users are people who are not programmers, but who need to use a
computer with more processing capability than word-processing and graphics-design pro
grams provide. Boxer users are envisioned as taking advantage of existing bodes of Boxer
code, hut still able to understand the internal workings of the tools they use enough to
modify these tools or create new ones.

Outside of education, the typical Boxer user is seen as someone who needs to organize
and store information, annotate it, operate on it. and retrieve it. Surely Boxer is more
friendly and easier to use than the combination of the Unix file system, shell scripts, and
/usr/bin/vi that even normal people are subjected to these days in the name of progress.

In the educational sphere, Boxer is used as a medium for micro’worlds.’ Because Boxer
can easily mimic the appearance of the printed page. it is sometimes helpful to think of
Boxer microworlds as “interactive workbooks” — that is, explanatory text, suggestions for
projects. and pictures. The difference is that the text, the suggestions, and the pictures
might all be programs or under program control. In Boxer, most such programs are simple,
easy to understand, and easy for users to modify.

1 [1) for an introduction to the microworid concept.
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The ease with which students are able to use and adapt Boxer programs was demon
strated in the summer of 1988, when a group of twelve- to fourteen-year-old students
participating in a U. C. Berkeley summer program used a Boxer microworld on statisti
cal sampling as an adjunct to their course on statistics. The experimenters found that
students were able to use Boxer as a reconstructable medium, making a series of gradual
reconstructions in refining their work. Furthermore, they were able to utilize the tool-rich
environment by modifying existing tools and creating their own tools from scratch. [6]

3.2 The Principles of Boxer

Boxer is an integrated, concrete system that exploits spatial reasoning to provide an easy-
to-understand computational resource for naïve computer users.

3.2.1 Boxer Is Integrated

Boxer is not a programming language coupled with a variety of satellite systems for user
interaction. Rather, it is a unified system with a single conceptual model spanning both
the programming language and the environment. Unlike conventional languages, Boxer has
no separate editor; the user can edit any procedure or data object visible on the screen.
Debugging and error handling are also subsumed by the same framework that supports
the programming language. The role normally played by a ifie system is subsumed by the
Boxer editor hierarchy itself. The Boxer user need not learu a series of differeut commands
or iuteraction styles for different modes or sub-systems.

3.2.2 Boxer Exploits Spatial Reasoning

The sense of space and depth inherent in a visual, two-and-a-half dimensional system like
Boxer makes the use of physical metaphors more direct and inviting than the text-oriented
interfaces of conventional programming languages.

The hierarchical organization inherent2 in Boxer makes the organization of one’s world
into- functional units natural. DOlT boxes visually delineate the procedures or expressions
they contain. Subroutines are represented as DOlT boxes within other DOlT boxes. DATA
boxes can be used to group other boxes into coherent units, expressing relationships in
sUl)jeCt to form programs or microworlds, or expressing relationships in functionality within
a program to make toolboxes or subroutine packages. Boxer represents these concepts in
an intuitive, spatial way.

Moving from one box to another is like moving around in a physical space. People often
worry that users will get lost inside Boxer worlds, and suggest that some sort of bird’s-eye
view map is necessary.3 Initially, Boxer had such a map; hut people did not use it. In

2Het,erarchies are also supported via ports. See page 5.
3In particular. Hypercard users seem to make this comment- on first seeing Boxer.
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general. Boxer users do not get lost. One reason might be that Boxer shows context at
1)0th higher and lower levels of detail, and makes it easy to pop up one or two levels to
look around if necessary. Systems that do not spatially represent the connection between
levels of information are difficult to navigate. Of eighteen systems supporting hypertext
capability recently reviewed[7]. Boxer’s presentation was found to be the one which most
naturally expressed hierarchical connections.

3.2.3 Boxer is Concrete

In conventional programming languages, and even in modern, interactive programming lan
guages like Scheme, procedures are at best “abstract beings which inhabit the computer.” [8]
When a programmer edits a procedure, s/he does so in an editor, making changes not to
the procedure, but to the printed representation of a procedure, which must be then com
piled or loaded. The programmer deals only indirectly with abstract objects, through a
computerized glove box. Data are treated in much the same fashion, though data struc
tures are frequently not at all editable. and can be known only through some procedural
abstraction.

In Boxer. every procedure and every data object is presented as if it actually eñsted on
the screen. There is a one-to-one correspondence 1)etWeefl objects in the. Boxer world and
objects on the screen. One consequence of Boxer being concrete is that one can.change the
value of a variable or the definition of a procedure merely by placing the cursor inside a box
and typing. Conversely, changing the contents of a variable with a Boxer program causes
the new contents to be displayed on the screen. Users can manipulate the procedures and
data that fill the computer’s memory directly, in a concrete way

This concept is sometimes difficult for users of conventional programming languages to
grasp at an intuitive level. On the other hand, naïve users of computers expect computers

to operate this way. After all, (outside of television) the physical world works the same
way: if you can see something in front of you. then the thing you see is that something:
and if you can touch it, you can also change it.

~a.riables in Boxer are also different from those of other languages. In Lisp-like lan
guages. variables are associations between names and objects, and are best thought of as
cells containing pointers; two variables may, for example, point to the same object. In
Boxer, variables are simply boxes with names attached. The name is the varial)le name,
and the contents of the box form the value. Rather than having a Lisp-like SET! or SETQ
operator which alters the value pointer of a variable, Boxer offers direct mutation of box
contents as its primitive assignment operator. The CHANGE primitive replaces the contents
of one box with a copy of the contents of a second.4 The box that represents the variable
remains the same box; only its contents are replaced by the new contents. This model of

• 4Boxer’s concept. of variable is more like that of FORTRAN than that of Lisp: the data are actually
in the variable. As in FORTRAN assignment. it. is the coiitents of variables that. are changed. Indeed, in
FORTRAN the contents of cons~.ant.s may he changed! This is quite Boxer-like, although in Boxer only
copies of the constants are changed.
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variables fits well with the naïve, physical understanding of variables as labeled boxes that
contain their values.

Boxer also represents variable scoping in a visual, intuitive way. An expression may
refer to variables defined in the box that contains it. or to those defined in a superior box.
Thus. boxes (both DATA and DOlT). represent environment boundaries.

3.2.4 Boxer Offers Diffused Functionality

Related to the ideas of concreteness and integration are those of tunability and diffused
functionality. DiSessa cites diffused functionality as the idea of one construct serving many
functions. The box itself is a prime example: already we have seen boxes used to represent
data and procedures, to form environments for variable bmcling, to group text and other
boxes, and to act as parenthesized expressions. Boxer uses the box to all these ends in a
consistent, natural way.5

The design of the programming language for Boxer, also, has been guided by the idea
of diffused functionality and the related idea of detuning. As cliSessa puts it,

Detuning means having general structures underlying the computational envi
ronment that are broadly applicable, less highly tuned to any specific function,
and always available for use. [10]

The Waring Bar Blender, a consumer product,6 provides a more physical example of
detuning. Most blenders made in the United States feature a long row of buttons, each
corresponding to a different motor speed. The buttons are labeled with words, beginning
with “stir,” proceeding through “blend,” and ending with “liqiiify.” A separate button.
labeled “pulse,” offers pulse control of the motor. Blender users, however, ignore most of
the speeds, and favor simply turning the blender on and off over using the pulse button.
The Waring blender, by contrast, has a single toggle switch with three settings: off, high,
and low. The blender, instead of offering a multitude of confusing options, presents a
uniform interface which subsumes the functionality of other systems.

3.2.5 Boxer Conforms to Naïve Realism

People expect the new things they encounter to be like old things, only a little different.
Computers, or more precisely, the abstractions that computers present, are frequently
unlike old things in surprising and complicated ways. Without a doubt, some of the power
of computers comes from this abstractness, and from their difference from things in the
physical world. Even so, it should be possible to make this power available through some
mechanism which more closely approaches the physical world and the assumptions people
have a.l)Oltt it.

5Michael Eiseuberg offers an excellent discussion of these issues in his section on Boxer in his mast.er~s
thesis on Bochser. [9]

6Waring. Inc.. 475 Steamboat. Road. Greenwich, C’onn.
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Boxer attempts to conform to models that people already have about computers. The
copy-and-execute model of computation is chosen for Boxer because of its simple, unifying
nature. In its barest form, it offers a two-step process for executing Boxer procedures:
On encountering the name of a DOlT box, replace it. with a COPY of the box, and begin
executing the contents of the procedure. Similarly, to evaluate a name which specifies a
DATA box, replace the name with a copy of the box.

As the Boxer user progresses. s/he encounters more advanced features of Boxer that are
not explained in this initial subset of the model. We have taken care that these concepts
are not necessary in the early stages of Boxer use: nevertheless, they are explained in the
full Boxer model. A more complete, yet still intuitive, explanation of the Boxer model of
evaluation can be found in Chapter 4.

3.2.6 All of the Above

Boxer, being integrated, is a synergistic whole. The naïve realism of the programming
model is inter-related in design and implementation with the aspects grouped wider “con
creteness.” It is difficult to discuss these principles in isolation of each another, and difficult
to ascribe a particular feature of Boxer to just one of them.

Boxer attempts to make computers available to people. In Boxer, “simple things should
be easy; hard things should be possible.”7 Many things one writes programs for in other
laiiguages can be accomplished in Boxer with little or even no prograimniug, because so
much of what people want to do with computers is taken care of by Boxer’s integration.

In Boxer, it is simple to input, organize, manipulate, and display information. hi this
sense, Boxer is like the Alto computer of Xerox PARC, whose designers recognized that
the most important tasks of a personal computer are the input and display of information.
In an strategy unheard of at the time, the Alto devoted over half of its processor time to
the cisplay.[21j However, the designers of Boxer have also taken their Logo heritage and
placed importance on the maiiipulat.ion of that information under program control.

A loose categonzation would place mampulation in the hands of the Bo’cei language
itself, though certainly the rest of the system plays a role. Similarly, the language must
support (or at least operate in consonance with) the input, output, and in particular
organizational principles of the Boxer system.

While it would be possible to make an editor-only version of Boxer, to do so would be
to miss the point of the system as a whole. The programming language itself comprises
less than 2Oin Boxer, yet it is precisely the presence of the programming capability which
makes Boxer an reconstructable, interactive medium.

TcliSessa., personal communication.
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3.3 The History of Boxer

Boxer has had a unique development history. It was not hamniereci out in a short series
of intense committee meetings, nor was it an amalgam of the best (or worst) features of
already existing languages. Instead, Boxer came al)Out iucreiuentaily, through a cycle of
design, discussion, implementation, and testing.

Boxer and Logo share the incremental design-and-test development cycle. Some of the
ideas for Boxer were formed during the development of Logo itself, or arose from thinking
about prolileius in Logo. My work on implementing Boxer is directly related to my previous
experience at the M.I.T. Logo Laboratory. In this section, I present the history of Boxer
as I have seen it.

The idea for Boxer is due to Profs. cliSessa and Abelson. The work described in this the
sis has all taken place under their guidance. and in the framework which they established.
They formed and headed the Educational Computing Group, in the Laboratory for Com
puter Science, at M.I.T., where the Boxer project was centered from 1981 through 1985.
Since 1985 the Boxer project has been a part of the U. C. Berkeley School of Education,
Division of Education in Math, Science and Technology.

3.3.1 Boxer and Logo

Over the years, the designers of Logo expended much effort on the programming language,
with less emphasis on the programming environment. Although the editor, interaction
system, ifie system and graphics were always close to state-of-the-art for research compixt
ers, their design and their integration with the model of computation was not given the
priority the language itself enjoyed.

With the development of MIT Logo for the Apple II and TI Logo, Logo received its
first wide exposure. Problems in understanding and using Logo became prominent. As
part of the team that implemented these last versions of Logo at MIT, I became concerned
about some of these issues.

Logo offers little in the way of organizing programs. Logo programs much longer than
ten or twelve procedures became complicated to deal with, because Logo offers no ability to
group procedures textually. The “bag of procedures” methodology is the only one available.
Within the procedure, Logo makes no provision for formatting lines of code. Logo offers
only lists and words as data structures. Harvard’s PPL, which supported record types.
seemed to have something to offer. [12]

In 1981, I began working on a specification for a new Logo, one that would solve these
problems. My colleague Patrick Sobalvarro and I co-authored an internal Logo paper on a
next-generation Logo to run on the new Motorola 1v1C68000 architecture. The Logo system
was to use my new Logo specification. and to offer an editing system integrated with Logo.
along the lines of the MIT Lisp Machine CADR8 system. In short, we proposed to build
a Logo machine.

8The CADR. system integrates the programming language and the operating system. See [261.
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When I presented the first of my ideas on formatting to Abelson, he told me that he
and ciSessa had been developing a concept for a completely new language called “Boxer”,
in which procedures and data would be unified aiid represented on the screen as boxes.

Abelson and cliSessa envisioned a system that would be designed a priori with a simple,
understalldal)le model conipntatiou~ which would appeal to spatial reasoning as a mode of
understanding. The emphasis was oil ease of use and understanding, with less importance
placed on efficiency or difficulty of implementation. To this end, the authors proposed a
system which integrated the editing, filing, interaction, and computation systems under a
single model.

3.3.2 Problems in the Logo Model

In using Logo. children initially treat the language as if were English. The Logo expression
FORWARD 100 seems acceptably near the English sentence “Go forward 100 steps.” Logo
procedures were designed to take advantage of the similarity in English between the infini
tive form of verbs used in definitions with the TO primitive and the imperative form used
in programs. Procedures, if introduced at this stage, are seen as recipies. or some other
convenient analogy. Young[13j refers to this kind of understaiidiug as a strong analogy,
and gives the example of a computer terminal being “like” a typewriter. Such models
may make computers seem more familiar, but are of limited use in terms of actually using
computer systems.

Young further discusses surrogate models, which he explains as simplified, mechanistic
accounts of systems which are fairly accurate “cover stories.” They need not explain
every detail of a system, hut they should allow the user to understand and predict system
behavior. The Scheme substitution model[8] is an example of such a surrogate model.

Surrogate models are usually too complicated to consult for every decision, and novices
often employ a more simple kind of model in the actual use of a system. Young calls these
models “task-action models.” These models explain only a small part of a system, by
providing a mapping from what the user wants to do (the task) to what the user must do
to the system (the action).9

Logo users start with a simple analogy or model: Logo is like English. The standard
Logo route to understanding is a series of successively more nearly correct surrogate models.
There is, however, no single “Logo model,” other than the Lisp-based implementation.

At the Logo Laboratory, Seymour Papert and Cynthia Solomon developed a model of
Logo called “Little Men Lines,” in which proc~dures are seen to be little people, with one
person per procedure. Procedure invocation is seen as the “cloning” of a new procedure
man, who receives things (the inputs) from, and returns something (the output.) to his
caller.

9Mtich to the consternation of Logo designers, some young children, while failing to understand more
useful parts of Logo. revel in certain obscurities, such as the syntax of the print command, or the numbers
that. represent particular colors. Perhaps their delight. is in the mastery of collections of Young’s task—action
models.
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Although the “Little Men Lines” surrogate model seems to help explain recursive pro
ceclures to chulciren who can already use procedures, it does not help in other areas, such
as understanding expressions that make complicated use of varial)leS. Logo users adopt
task-action nioclels for dealing with such problems. For example, Logo uses “dots” (colon)
to dis~tinguisli a reference to the value of variable from a call to a procedure of the same
name. Not understanding the idea of reference, Logo users frequently interpret the dots
character to mean simply “variable.’ Although this task-action model works at one level,
it does not explain multiple evaluation of variables, or the use of variable values as variable
or procedure names.

Indeed, the only model of Logo that can explain everything that Logo does is the
real. Lisp-like implementation. Unfortunately for the user, Logo at this level is even more
complicated than most Lisps. Logo code is parsed, using precedences and parsing rules
that are seldom documented. Logo only imperfectly hides some of its implementation
details. Even the moderately advanced Logo programmer runs into problems that can
only be solved — or at least understood — in terms of the details of the underlying
implementation, and this is not subject to any cognitive model.1°

Models and analogies can generally help students learn how to write procedures in
Logo. For example, procedures with arguments (inputs in Logo parlance) are generally
introduced by analogy to primitive commands with inputs. Introducing procedures that
return values (output) is usually done with some sort of pictorial explanation, with input
hoppers and output chutes. Global variables are seen as boxes with labeled tops.~~ Many
chilciren frequently do not master the use of inputs, and even fewer use outputs. Procedures
in Logo are simply too abstract.

The Logo community developed a schism when Logo Computer Systems, Inc. intro
duced their own version. of Logo in 1981. The developers of LCSI Logo, somewhat under
the general direction of Prof. Seymour Papert, hypothesized that the difficulties in un
derstanding Logo came from irregularities in its implementation. In particular, the condi
tional operator IF and the primitives that deal with printing and editing procedures (EDIT.
PRINTOUT, ERASE) were all special forms in Logo. LCSI Logo developers felt that this was
an impediment to true understanding of the Logo model.

The difference between the MIT and LCSI implementations is not so much about which
is truer to some abstract model, but about which Logo presents a real, working system that
is more easily modeled from a naïve standpoint. This means nothing more than asking
which system is easier to understand.

The position of the Boxer developers was that a new language for naïve users should
be designed from the ground up — with an explicit, spatial model of computation.

‘°For example, the FIRST aaid BUTFIRST primitives, corresponding to CAR and CDR in Lisp are extended
to operate on symbols and numbers and are supplemented with the LAST and BUTLAST primitives: but LAST
and BUTLAST are much slower than their couiiterparts, FIRST being 0(1) and LAST being 0(n).

11That. this appeal to visual modes of understauding works is one of the strongest arguments for a Boxer
t.ype system.
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Chapter 4

The Boxer Model

The i~rev ous chapters have presented Boxer from the point of view of users aiicl designers.
This chapter provides a transition, presenting a detailed explanation of the model used for
evaluating Boxer programs. One description is textual and semi-formal. This description
of Boxer is the definition to which the implementation must conform. The other description
is a visual example of the process of evaluating a particular expression.

4.1 The Detailed Model

Section 3.2.5 presented a two-step model for the execution of Boxer programs. That model
is correct, though incomplete. It is the first explanation of Boxer program execution given
to a Boxer user, and for the cases novices encounter it is sufficient. Indeed, the phrase
“copy and execute.” though merely an emblem of the entire evaluation process, is enough
to predict much of how Boxer evaluates programs.

A fuller model of execution is presented below. It is not a contradiction with Boxer’s
principles if this model looks daunting on paper: The spatial, intuitive aspects of un
derstancing the Boxer model cannot be overstressed. The reader may wish to refer to
Figure 4.2, which shows the successive frames that the Boxer movie stepper’ presents in
the evaluation of a simple expression.

The explanation of the model presented below explicitly handiles every aspect of Boxer
programs except for flavored inputs and the details of primitive commands such as TELL.
REPEAT, and IF.

Flavored Inputs Input flavors offer control over the parameter passing mechanism.
Normal Boxer “copy” semantics is call-by-text. The port-to input flavor changes the
mechanism to call-by-reference for a given parameter. The presence of the datafy flavor
allows access to the text of a parameter object, and rules out call-by-denotation as an
implementation strategy.

1See Section 4.2.
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Figure 4.1: How to execute a line of a Boxer program.

1. Examine the first thing on the line.

• If it is a word which is the name of a box:

(a) Look up through the levels of boxes until you find a box with that name.
(h) Copy the named box, sans name, and replace the word on the executing

line.
(c) Go back to before the new box and continue executing the line.

• If it is a DATA box, leave it as is.

• If it is a number, replace it with a box containing that number.

• If it is a port. replace it with a port to the same box.

• If it is a DOlT box, examine the DOlT box and count the number of inputs. If
the box requires inputs, continue executing the rest of the line until there are
enough DATA boxes available on the rest of the line to serve as inputs. When
clone (or if there are no inputs), perform the following operations:

(a) Move the input DATA boxes into the DOLT box.
(b) Name them according to the names of the inputs of the DOlT box.
(c) Begin executing the lines of the DOlT box, one by one.
(d) When finished, replace the I)OIT box with the last DATA box or port left on

the last line of the DOLT box.

• If it is an Q character followed by a Boxer object:

(a) Evaluate the Boxer object by itself, using these rules, and obtain a result
box.

(b) Replace both the ~ and the object with the contents of that result box.
(c) If it is a word which is the name of a primitive:

Treat it as if it were a DOLT box which produces its result automatically
once given the input DATA boxes.

2. Step 1 should have produced one or more data boxes or ports. Continue using Step
1 to excute the line until it has nothing left but DATA boxes or ports.

3. When all names. DOlT boxes, and ports have been eliminated, the line is done. The
result of evaluating a line is the last DATA box or port on that line.
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Although input flavors are not described in the semi-formal model of Figure 4.1, they are
a straightforward extension of it. The formalism necessary to write down the modifications
is cumbersome and not instructive. Boxer users never see such a model written down; they
are taught the Boxer model of execution in conjunction with the Boxer movie stepper, and
learn it in a visual framework.

The underlying idea, however, is simple. For each expression which is expected to pro
duce a value, the system must remember which 1111)Ut flavor is expected. This input flavor
comes from the INPUT line of the DOlT box, or from the definition of the primitive. When
it comes time to copy the result of the expression (or immediate datum), the evaluator
must check the input flavor. If it is a PORT—TO flavor, the evaluator should construct a port
instead of making a copy. Other flavors, such as DATAFY and BOX-REST (similar to the Lisp
&-REST argument declaration), are merely new cases of the “If it is...” forum.

See Section 6.2.2 for a discussion of the implementation of flavored inputs.

4.2 The Movie Stepper

The Boxer movie stepper is a tool for understanding Boxer. Pressing the step key instead
of the doit key causes Boxer to show the evaluation process on the sci:een. This stepper is
called a “movie” stepper because the way it represents the process is by showing a movie;
steppers iii other languages are merely programs which print out tracing or debugging
information, unrelated to the semantics of the language. In Boxer, the movie which the
stepper shows is the actual process of evaluation. By the principle of concreteness, every
object in Boxer has a place on the screen. The stepper shows the intermediate objects
which are created during the evaluation of expressions.

Figure 4.2 shows the successive frames which the stepper presents in the evaluation of
a simple expression.

Section 5.3.6 discusses a few implementation details of the stepper; however, a detailed
analysis of the stepper is outside the scope of this paper.

4.3 Variable Scoping

Time clever reader of the Boxer programming model will note that since procedures are
copied textually into their callers, Boxer has dynamic scoping. The choice of dynamic
scoping runs counter to modern trends in computer science. and requires some explana
tion. Part of the appeal of dynamic scoping is that it emerges from the simplicity of the
model. Other models, almost as simple, give rise to leñcal scoping of procedure param
eters: however, they require the use of ports in procedure call. This complication. slight
though it may be, involves the introduction of a concept unacceptably difficult for the
purposes of the Boxer computation model, coming as it does so early in the user’s Boxer
career.
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Figure 4.2: The procedures to be stepped:
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In contrast with languages like Logo, Scheme, and earlier languages such as FORTRAN.
Boxer is trite to the model used for explanatory purposes. [10] and [9] offer discussions
of the importance of programming models, an in particular the importance of a simple,
correct model. Although lexical scoping avoids programming pitfalls produced by name
conflicts in dynamic scoping, it also complicates the user model. The presence of dynamic
scoping has. however, made it difficult to write a compiler for Boxer. This price is one we
have paid for adherence to a simple model.

4.4 Bugs in th~ Model

The above model describes quite accurately how Boxer runs programs. The implemuen
tation described in the succeeding chapters generally follows this model. The details of
box copying, of data mutation, and of variable scoping are all self-consistent and imple
mentable.

There is, however, one slight internal inconsistency, independent of any implementation
considerations. By the definition above, pressing the DOlT key on an expression should
cause the expression to be replaced by its value; expressions which return no value should
simply disappear. Since this behavior would be inconvenient in the extreme, Boxer makes
a special allowance for the top-level expression, and places the returned value after the
expression.

One explanation of this behavior is to say that Boxer copies the initial expression to
that place, and then applies the above model to the copy. However, that copying operation
does not preserve the identity of DATA boxes present on the line. This modified model.
however. caitnot explain how.. the following use of the CHANGE command alters the first
DATA box:

CHANGEI1 112
flil’A flAI’i

We have chosen to ignore the problems which the returned-value convenience feature
engenders. as they appear not to cause confusion in Boxer users.
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Chapter 5

Language Implementation Issues

Chapters One through Four presented language design issues, explained the Boxer system
and language, and chronicled the evolution of the language model, all independently of
any implementation considerations.

Figure 5.1 is a “road map” to the design and implementation issues treated in this
paper. Note that it is not a block diagram of the Boxer system, or even of the Boxer
evaluator. Not all components of the evaluator system appear in the diagram; some of the
parts in the diagram represent system-wide concepts or choices rather than code modules.

The map is loosely organized into three regions: language design issues. language im
plemeiitatiou issues, and implementation efficiency issues. The arrows in the map show the
influence of the constraints and decisioils of one item on another. Although l)y no means
an exhaustive listing. this map is a useful tool in understaiiding the choices we have made
in implementing Boxer.

This chapter begins the discussion of language implementation issues, which are dom
mated by the choice of an explicit-control evaluator. The following section is a history of
the previous implementations of the Boxer language, and explores some of the reasons for
this choice. Section 5.2 is a more technical explanation of the modules of the evaluator
system and of its interaction with the rest of Boxer.

Language implementation issues not covered in this chapter are described in Chapter 7.

5.1 Implementing Boxer: An Apologia

My work with Boxer has been concerned primarily with the programnüng language. and its
interpreters. compilers. debuggers, and error handilers. The first language implementation
of Boxer was done in 1981 on an MIT CADR Lisp machine, with the editor and compiler
1)0th developed by David Neves. The compiler was a Boxer-to-Scheme translator. Eric
Tenenbaum, developed a Boxer-to-Lisp compiler that produced code running natively on
the Lisp Machine. Gregor Kiczales was responsible for the Boxer variable mechanism. the
editor redisplay algorithm, and Boxer internal data structures for both the editor and the
prograuhlrnng system. Edward Lay took over the reins from Kiczales. and has thoughtfully
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re-designed and re-implemented the system.
One of my tasks in 1983, when I became involved with Boxer, was to take charge of the

programming language. The existing language was only a place-holder, as the evolutionary
design process was expected to take maiiy years. Execution speed and convenience of
implementation were never the primary forces in the design of the Boxer specification~ but
were of course important in the actual implementation.

I first implemented a Boxer-to-Lisp compiler based on a Pratt parser.[14~ I chose this
approach because it seemed to provide a flexible sul)Strate for implementation. and because
the pOSSil)ility of compiling the resulting Lisp code was hoped to to make up for other
inefficiencies in Boxer.

Nevertheless, from my experience with Logo, I knew that implementing Boxer as a
translator would be fraught with difficulties. The translator approach would put pressure
on Boxer to conform to the semantics of the host language. The translator approach also
made it attractive, aiid sometimes necessary, to write heavily system-dependent code (see
paragraph Previous Implementations on page 34). Writing a Boxer error handiler would
also have required a complicated set of system-dependent routines for stack manipulation.

Furthermore, in a language with Logo-like syntax, it is not possible to parse a line
of code without knowing the number of arguments to each procedure.1 Redefinition of
a procedure may invalidate the parsed code of many procedures. The Logo-to-Maclisp
compiler LLOGO skirted this problem by the use of backpointers from procedures to their
uses. [15]

The MIT PDP-11 version of Logo[28] andthe later microcomputer implementations of
Logo[29] instead used a one-token lookahead evaluator, combining parsing and evaluation.

Later, Gary Drescher at LCSI used a global counter, tiniestamping each procedure
and incrementing the counter ~rhenever a procedure was redefined with a different number
cf arguments (or a new procedure was defined with other than the number of arguments
assumed for undefined procedures). After a new definition, all existing procedures (affected
or not) are re-parsed as they are invoked.2 The overhead of re-parsing potentially the
entire workspace after each procedure definition was justified by the reduction in storage
requirements over the LLOGO scheme. In practice, the overall LCSI implementation was
slower~ than the MIT version by 10

Despite the shortcomings of the translator approach, I felt that it was the best approach
for Boxer, as we required rapid prototyping for defining and re-defining the precise seman
tics of Boxer, and that approach offered extreme flexibility. I chose to ignore the redefinition
problem in the compiler, requiring our users to haiulle the redefinition themselves, and I
resolved to write an interpreter when the language became more firmly defined.

In 1984, during a hiatus in my association with the project. the group decided that

~ has the added problem that a given variable might refer data in one invocation and a procedure

in another.
2ç~ a.ry Dresciter, personal communication. Dresclier notes that. “the counter only increments for redefini

tion of a procedure which is called in some other. already-parsed procedure (each procedure has a bit that.
says if this has happened); otherwise, no reparSiflg is iiecessary.
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issues of BOxer syntax and semantics were stable enough to move to an interpreter. Indeed,
an interpreter seemed necessary to experiment with flavored inputs which were then one
focus of discussion in Boxer. Lay implemented an evaluator that was composed of recursive
Lisp procedures. The emphasis was on experuuentmg with flavored inputs. the TELL
prinutive. and other related issues, w~ ile solving some of the known problems with the
existing parser. As the evaluator was written as a series of inter-calling Lisp procedures.
the Boxer stack was still represented as internal Lisp state, and was not accessible to a
debugger.

li~ 1985. work on the Boxer language shifted to design at a finer detail, with an eye
toward tuning the existing semantics, and writing a stepper and debugger. I returned to
M.I.T. to work on an explicit-control evaluator, which would keep keep its state in Lisp
variables accesSil)le to a stepper, debugger. or error handler written in stamidard Lisp. We
chose the emerging Common Lisp as an implementation language because of its stability
and closeness to the Lisp Machine Lisp in which the existing Boxer code was written.

Beginning in 1984. I had been developing a portable implementation of Logo with
Sohalvarro. Taking his explicit-control Logo evaluator written in C as a base, I began
work on the Boxer interpreter.

5.2 Boxer and the Interpreter

Figure 5.2 shows the organization of the Boxer system. This chart was derived from an
analysis of the source code. Modules which serve only as interfaces to other modules have
been omitted for clarity.

Boxer is organized around the editor module, which defines and maintains the box
hierarchy. By the Boxer principle of concreteness, every Boxer object must be represented
in the hierarchy; due to the pervasive nature of boxes, the subsystem that maintains boxes
themselves occupies a central position in the diagram.

Shown above the editor module is the evaluator module. The direct line connecting
them is a narrow interface, confined mostly to the operation of the doit key and other
Boxer keys. The majority of interaction between these two modules takes place through
the virtual copy module, which carries out most of the copy operations that occur during
program execution.

The evaluator itself is divided into six parts, as shown in the figure. The definitions
package is nothing more than support for the other systems. and a detailed examination
of the stepper and error handler systems is outside of the scope of this paper.

The variables module is explained in Section 5.2.2 and Section 5.2.3.
The following sections will describe the state machine and stacks.

5.2.1 State Machine

The heart of the evaluator system is a single Lisp function, BOXER—EVAL. This function
is an explicit-control evaluator written in Common Lisp. Explicit-control means that it
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does not rely on the underlying language for support of procedure calling and argument
passing.

The evaluator is coded as a single function to prevent the growth of Lisp stack, which
would make writing a Boxer debugger system difficult, and would make tail recursion in
Boxer impossible. Implementation of the explicit-control evaluator as a single function
posed no additional design difficulties and resulted in a gain in execution efficiency, since
the overhead associated with ueedlless Lisp procedure calls is avoided.

The state machine maintains its state in variables defined in the evaluator definitions
module. These variables hold the currently executing function and pointers to the current
line and token, the function for which arguments are being gathered and its argument list
amid flavors, the most recently generated value, and the three stack pointers described in
Section 5.2.2.

Recursive Evaluation

One constraint imposed by the explicit control evaluator is that it not be invoked recur
sively. That is. primitive operations which require the evaluation of expressions may not
simply call the evaluator; all control information must. be kept on the Boxer control stack.

The implementation provides a mechanism for defining primitives, such as RUN and
REPEAT, that perform recursive evaluation. These primitives are automatically broken up
into four segments: a Lisp function to be executed before the recursive invocation, a list of
Boxer code to be evaluated, a Lisp function to be executed after the recursive invocation.
and finally a (possibly empty) clean-up function to be executed in the event of a error
or other non-local e~dt. The before and after Lisp functions may communicate via state
varial)les, which are preserved in PDL3 stack frames should calls to the primitive become
nested.

5.2.2 Stacks

Boxer has three differeut stacks. The VPDL, the PDL, and the Dynamic Variables Stack.

VPDL

The VPDL, or “value push-down list,” is the intermediate resting place for values which
will become the arguments to functions, either primitive functions defined in Lisp or Boxer
(DOlT box) functions. It is implemented as an array with a global index pointer.

When a form generates a value, the evaluator checks whether arguments are 1)eing
gathered for a function, and if so, pushes the the value on the VPDL.

The evaluator clause that invokes primitive operations simply leaves the values on the
VPDL. All primitive operations are defined as Lisp functions of no arguments which pop
their real arguments from the VPDL into local variables. This mechanism avoids the

3See Section 5.2.2.
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inefficiency associated with creating an argument list for the Lisp APPLY primitive, while
still allowing fast reference to the values within compiled primitive functions.

PDL

The PDL (from the archaic “push-down list”) contains the control flow information for
the evaluator. It is organized into typed stack frames, which are implenienteci as lists.
Each stack frame points to the previous stack frame and the next stack frame. To reduce
garbage collection overhead, Boxer pre-allocates the various kinds of PDL stack frames
and maintains them on free lists. The use of typed stack frames has mache the CATCH and
THROW operations (implemented in Boxer by procedure names and the STOP commaiid,
respectively) particularly easy. Additionally, it has helped in debugging the evaluator at
a very small overhead cost.

There are three main kinds of stack frames. Argument-evaluation frames preserve the
function and (remaining) argument/flavor list of the function for which values are being
gathered. Function-call frames preserve the pointers to the currently executing function,
line, and token. and a few other state variables. DOlT port frames preserve the static and
dynamic variables contexts across lexical function calls.

The recursive evaluation primitives also define PDL stack frame types. In addition to
a minimum of state variables associated with the recursive evaluation mechanism, these
frames preserve the state variables of the recursive evaluation primitives. For example, the
REPEAT primitive frame preserves the list of Boxer commands to execute and the remaining
repeat count.

Each stack frame type is defined with a name. an initial number of frames to be pre
allocated, a growth rate, alist of state variables to he preserved, and an unwind-protect
function. The unwind-protect function pops the frame in case of error or non-local exit, and
performs any necessary clean-up operations. The unwind handler for function call frames is
responsible for removing dynamic variable binding information from the dynamic variables
stack. Similarly, the handler for argument evaluation frames removes values that have been
gathered but not yet used from the VPDL. Frames associated with recursive-evaluation
functions use the handiler specified in the primitive definition. The default handler merely
pops the frame and restores the values of the variables it protects.

Dynamic Variables Stack

As will be described in Section 5.2.3, formal parameters and local variables of procedures
are bound to their values by deep binding, using a list of association lists. The evaluator
state machine is responsible for binding and unbinding these variables. The evaluator
clause which invokes user functions calls a function that performs dynamic binding. This
function builds an association list of the the argument list from the user function and the
values that it pops from the VPDL. Additionally, the dynamic binding function makes
(virtual) copies of the local variables of the DO IT box and includes them and their names
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in the association list. This association list is then pushed onto the dynamic variables
stack.

5.2.3 Variable Reference

Dynamic Variables

Although varlal)le lookup is defined in the Boxer model as an outward scan of boxes.
the implementation takes advantage of the fact that dynamic scoping is obtained under
the copy—and—execute model and implements it directly, dividing variable lookup into two
segments: dynamic lookup and static lookup. Dynamic variables are the arguments and
local variables of the current DOlT box, and as well asthose of all its callers.

In an earlier implementation of Boxer, the use of shallow binding for dynamic variables
resulted in an unacceptable performance in context switches done with the TELL primitive
and with port execution. The current dynamic variable binding mechanism is implemented
as set of simple association lists, one per DOlT box.

On procedure invocation, the formal parameters. already copied or treated in accor
dance with the input flavor of the procedure. are associated directly with the variables.
Local DATA variables of the DOlT box, however, are (virtual) copied before being pushed
in the binding list.

Problems with the Implementation The clynaniic variable binding function allocates
almost all of the temporary storage that the evaluator uses, especially in compute-bound
functions. The presence of ephemeral garbage collec~ion4 in the Lucid implementation of
Common Lisp makes this storage allocation — and its attendant garbage collection —

tolerable. A future implementation might use two simple vectors for this association list,
and eliminate temporary storage allocation except in deep recursion.

Tail recursion, though not presently implemented, is expected to give a speedup in what
is currently the slow case of dynamic lookup, by eliminating stack growth in tail-recursive
loops.

In violation of the strict definition in the copy-and-execute model, DOlT boxes remain
uncopieci on procedure invocation. This expedient is not without problems: self-modifying
code, rather than being “safe” and changing on the executing copy of a DOlT box, changes
the original box. Calls to the CHANGE function which perform mutation on named data
boxes are not affected.

We have chosen to ignore this problem, because it is difficult to make use of self
modifying code which does not effect its modification without the use of variables names.
Such code is either difficult to write, or difficult to use. For example, a DOlT box which
contains the expression

~change~ [~
fl~1’A flATA

4See [30] for an explanation of this feature of Lucid Common Lisp.
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is an instance of self-modifying code; yet in effect such expressions are almost entirely
useless. as there is no way for a procedure to access the a DATA box without a name or a
port.

Using accessor and the UNBOX or ~ functions to reach the contents of a DOlT box which
is inside a named DATA box is not feasible either. since neither of the de-reference functions
can ufll)OX DOlT boxes. UNBOX issues an error, and ~ causes immediate execution of the
1)OX.

Only by creating a port directly to a DATA box which is part of a procedure can a Boxer
user create self-modifying code. Since DATA boxes have a list of back-pointers to any ports.
the dynamic variable binding mechanism could be changed to use some cached information
regarding which DATA boxes in procedures are actually ported to and must therefore be
copied on procedure invocation. Implementing such a feature would be possible, but
perhaps time-consuming, audi is not contemplated for the immediate future.

Previous Implementations Dynamic scoping in Boxer has had a miml)er of flip-flops
in implementation. In the first implementation it was difficult, as the Boxer evaluator was
a Scheme interpreter written in Lisp Machine Lisp. In the second implementation~ since
procedure (DOlT) boxes were translated directly into interpreted Lisp procedures, variable
scoping was automatically dynamic. Gregor Kiczales implemented the static Boxer vari
ables which come from box nesting through an ingenious mechanism: associating with
each box a Lisp Machine closure5 over variables which were contained in the box it rep
resented. Moving the cursor from one box to another caused the box functions to throw
to the lowest common superior point and then invoke one another through a path leading
to the new 1,ox. Taking advantage of the host system’s shallow binding made variable
reference fast. but also made context switch particularly slow. Adding new variables was
difficult, because the lexical environment was at that point dynamic, and represented by
the internal Lisp stack. On the CADR[26}, Kiczales was able to use a “stack-blt” rou
tine to manipulate the Lisp stack directly in order to add variables to the running closure
functions. Increased emphasis on context switch ~peed eventually made this approach less
attractive. The Symbolics 3600 implementation used deep binding both for portability
and for context switch speed.

Static Variables

Static lookup continues where dynamic hookup leaves off. It begins in the box where the
top-level procedure was invoked; that is, it begins in the box where the user pressed the
doi~ key. and continues with that box’s superiors in the editor hierarchy.6

In the editor data structure, static variables are stored in assocation lists variable/value
pairs. one per box. Static variable lookup begins with an association-list lookup of the

5Lisp Machine closures did not. close over an environment., but instead over a specified list of variables.
6St.atic Lookup actually begins from the static—variables—root, which is set.~ by the doit key. by the

TELL primitive, and by DOlT port execution.
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STATIC-VARIABLES-ALIST of the static variables root box. and proceeds with the superior
box, via the value of the SUPERIOR—BOX editor box instance variable. Primitive function
bindings, being outside the outermost box, are stcrecl in the Lisp value cells of the symbois
which name them.

Section 6.2.4 describes a caching algorithm which speeds up static variable reference.

Transparent Boxes

In Boxer, boxes define environment contours. In general, variables (named boxes) inside
a box are not accessible outside the scope of the bOX. The TELL prinutive is provided for
access to the static scope of a box. Also, executing a port to a DOLT box performs the
execution in the static scope of the target box.

In addition to these mechanisms, Boxer provides a third way of breaking the box
borders environment boundaries: the transparent box. Graphics boxes, for example, are
transparent. Although they have variables inside them, the scope of the variables is the
same as if they existed in the surrounding box. The transparency allows Boxer users to
use TELL to access the sprite boxes inside graphics boxes without first having to use TELL
on the graphics box itself.7

Transparent boxes are also sometimes used as toolboxes.[17J A toolbox is an aggrega
tion of sub-procedures which implement operations which should be considered primitive
operations in a particular box. or microworid. The toolbox groups the procedures together
and places them inside the box where they are to be used. Normal Boxer usage would put
all of the procedures inside the box directly, or would place them outside the box to 1)e
used.

Although the user is free to open the toolbox and examine or change the procedures,
the nature of toolboxes discourages experimentation. Since toolboxes do not follow the
normal scoping rules of Boxer, their use can be confusing to Boxer users. Toolboxes are
generally used in conjunction with closets.

Each box has a hidden place called the closet.8 The closet is used mostly in microworids
and interactive workbooks. It is a place for hiding internal procedures and data which are
visually distracting and not germane to the nñcroworlcl. However, the boxes in the closet
remain available for inspection and modification.

Toolboxes and closets are still considered experimental features in Boxer. Beginning
users finch them confusing, and users exposed to transparent boxes too early in their Boxer
careers have trouble understanding Boxer scoping rides.

The implementation of neither transparent boxes nor closets required any additions
to the evaluator. Editor routines handile the insertion and deletion of named boxes in
transparent boxes by acting on the static—variables-list of the superior box. Closets
are impleniented by the editor and the CHANGE function. Transparent DOLT boxes, though

7The notion of an “exporting” box, which would be transparent t.o only certain variables, is another way
that. graphics boxes have been implemented in the past.

8(~losets are a descendent. of diSessa’s local libraries. I suggested the name. and Lay implemented them.
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contemplated at one point, have not been implemented.

5.3 The Interpreter and the Editor

This section talks about the relationship between the editor and the evaluator in Boxer.
Since Boxer is an integrated system, the editor and evaluator are closely related. As

a consequence of this integration, the implementor is able to choose between an editor
system awl an evaluator system implementation of many of Boxer’s component features.
The following sections discuss the various points of interface between the two systems, and
mention the space/time or amortization9 tradeoffs in certain functions.

5.3.1 Editor Top Level

The top-level Lisp function of Boxer is a loop that reads events from the keyboard and
pointing device, creates Boxer function names from the key or click names, and calls the
evaluator on these functions. For example, pressing the F key causes Boxer to invoke the
CAPITAL-F-KEY function. Likewise, pressing META-B calls META-B-KEY. Mouse buttons or
keypad presses are similarly named.

Since all editing conunands are defined as Boxer functions, the user is free to rede
fine them in the scope of any particular bOX. This decision is part of the influence of
diffused functionality in Boxer: The popular Logo program INSTANT, which reads single
characters and moves the turtle accordingly, can be implemented in Boxer with almost no
programming.

Boxer editing commands are also available as primitive operations in Boxer: several
of them may be grouped together in a DOlT box to form an instant “keyboard macro.”
Values returned from key functions are inserted at the cursor position. Thus, assigning a
DATA box to a key function causes that key to insert copies of the box.1°

5.3.2 Polling

The editor system is responsible for interrupting the evaluator should the user request it.
The evaluator calls an internal polling function after examining a certain number of tokens
(currently fifty). The polling function should perform the input stream handling for the
editor. If input is not available from the operating system, it should return as quickly
as possible. Otherwise, it must get all available input, check it for the presence of the

9Spreading out. of expensive run-time operations. I im indebted t.o Ed Lay for pointing out this consoli
dating factor in the interface.

‘°The Boxer editor and evaluator conspire t.o create menus with no programming effort: To make a menu.
the user need only place the commands in a box. To use the menu, s/he simply uses the mouse or keyboard
to select. and evaluate the desired line. In the present. system. a double middle click on the mouse moves the
cursor to the indicated spot. and evaluates the line; this is merely a convenience, as using the mouse t.o move
the line and pressing the doit key is hardly ally more effort., and a natural operation in Boxer. Making a
menu DATA bOX into a. key function results in “pop—up~ menus. again with almost no programming effort.

30



interrupt character, and queue other events internally. The polling function sets a flag if
an abort was signalled.

In the stepper. the number of tokens to examine between calls to the polling function
is set to one.

5.3.3 Naming

Since variables are simply boxes with names attached, the editor is responsible for creating
Boxer variables. To create a variable or procedure, the user uses the left parenthesis or
1)racket key to create a box (DOlT aiicl DATA, respectively), and then presses the name key
or moves the cursor to the name tab of the bOX to type the name. Exiting the name area
causes the name to be assigned to the box. This exception Prevents boxes from receiving
successively longer names as the user types. Early implementations of Boxer had separated
the box from its name, and required using the doit key to make the assignment. Although
the idea of “assignment” was conflicted with the Boxer concrete idea of a variable, we
found it difficult to discern changes to the box iiame until we placed it in a special part of
the box.

The editor is responsible for informing the evaluator of the addition and deletion of
named boxes. and is f~irthermore responSil)le for ensuring that there is 1)ut one box with
a given name in each binding contour (box or transparent box). Presently. this is clone by
renaming any existing box to add a version number.

5.3.4 ‘I~ansparent Boxes

Transparent boxes are strange kinds of boxes that do not represent binding contours. Their
presence is presently a topic of debate. Early implementations of transparent boxes handed
them in the variable lookup, but the modern system places this onus on the editor. The
editor is responsible for maintaining the static variables associated with transparent boxes
just as it is responsil)le for maintaining those variables associated with normal boxes,
with the exception that the box in which the binding occurs is different. This change,
though complicating the editor slightly, made variable lookup faster. Section 5.2.3 describes
transparent boxes in detail.

5.3.5 Prompting

Boxer provides a key. the prompt key. to insert after a function (that is, after a DOlT box.
the name of a DOlT box. or a primitive name) the names of its inputs. Each input name
is followed by a colon. The Boxer user then fills in the input objects after the names. The
prompts can remain in the code to serve as documentation. Currently. the names are not
significant. and do not correspond to Common Lisp keywords, which allow specification of
arguments in any order.
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5.3.6 Stepping

The Boxer movie stepper, described in Section 4.2. is a debugging aid and pedagogical tool
that shows the process by which Boxer runs programs. To step through the evaluation of
an expression, the Boxer user simply presses the step key instead of the doit key. Boxer
them presents a moving picture of the evaluation process. starting with the expression.
showing its transformations according to the Boxer model, and ending with the value of
the expression.

The stepper is a slight altered copy of the state machine evaluator Lisp program. During
evaluation, this version of the evaluator uses calls to the editor system to copy, move,
change, and delete boxes in order to make the screen state reflect the current evaluator
state.

Additionally, the altered state machine does not use the mechanism of Section 5.2.2
to bind the local variables and formal parameters of DOlT boxes; the box nesting that
comes about as a consequence of the execution of the model handles variable binding
automatically. It is the strong integration between the editor and the evaluator that
makes this implementation possible.

5.3.7 Triggers

The Boxer trigger mechanism described in Section 2.2 is another point of interface between
the evaluator and editor systems. Its design was influenced by the Boxer concreteness
l)nnciple, and its implementation was influenced by the explicit-control evaluation.

The present implementation of triggers works much like the recursive evaluation feature.
Triggers are invoked either in the editor, by keyboard commands, or iu programs, by
mutation (or editing) primitives. hi either case, low-level functions in the box hierarchy
maintenance functions set flags and variables, which upper-level routines of the editor and
the evaluator examine.

Triggers tripped in editor commands are handled by the editor command loop, as the
evaluator is not actually invoked by most key and mouse operations.

Since triggers are signalled only during the execution of prinñtive operations, the prim
itive function return handling clause is the only place in the evaluator that examines the
trigger variables. In the present iniplemeiitation, the trigger function is simply inserted
into the token stream. The evaluator will then execute that function as if the trigger code
appeared ininiediately after the piiiuitive which caused the mutation (or entry or exit)
operation which invoked the trigger. Special care is taken to prevent the loss of returned
values from previous expressions.

Trigger functions are cached inside boxes. Cache maintenance is done by the editor.

Triggers and Sprites Modification triggers are used to implement one direction of the
concreteness feature of sprite instance variables. For example, changing the value of the
X—POSITION sprite instance variable moves the sprite along the s-axis. This behavior is
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Chapter 6

Implementation Efficiency Issues

This chapter treats the material in the “Implementation Efficiency Issues” clashed-line area
of Figure 5.1.

Implementation efficiency issues in Boxer have generally been concerned with execution
speed; memory usage has been a secondary consideration. An analysis of Boxer program
execution under the Lay Lisp evaluator and under the explicit-control evaluator identified
four major areas where speed improvements were necessary: box copying, Varial)le lookiip,
arithmetic aiid number processing, and flavored input haiidlling.

As Figure 5.1 shows, three mechanisms make these processes efficient: a detailed data-
type case analysis system in the explicit-control evaluator, a particular choice of the data
types used to represent objects in the evaluator, and a caching algorithm for static variable
reference. Section 6.1 describes the first two mechanisms, and Section 6.2 talks about how
all three mechanisms accounted for speed improvemeiits in the various processes.

6.1 Mechanisms for Efficiency

6.1.1 Explicit Control Evaluator Data-type Case Analysis Sys
tem

The central choice the language implementation was that of the explicit-control evaluator.
In the evaluator state machine (described in Section 5.2.1), each state which produces
values is composed of a series of handlers which dispatch on the data type of the produced
object. The flexible analysis this organization makes possible allows efficient flavored input
handing, reduces unnecessary copying, aiid makes arithmetic faster.

6.1.2 Restriction of Evaluator Data-Types

The exact nature of the data objects used to represent boxes and their constituents were
found to have a great effect on execution time of Boxer programs. Boxes in the editor
hierarchy are presently represented as PCL/CLOS (Portable Common Loops/Common
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accomplished by placing a call to a sprite updating function in the modification trigger of
each sprite iiistaiice variable.

Bugs There are presently bugs in this implementation of triggers: If the trigger gives an
error, the error is reported as having occurred inside the primitive operation which invoked
the error.

A correct implementation would make use of a proposed general pause/interrupt inech
anism, rather than altering the token stream.

The cunent njechamsm does not piesei~e the static enviiomuent of the tnggei function
Using CHANGE to altei a poit to the instance ~anable of a spute bOx not accessible 1YS’

name does not woik because the spute update function is in~ okeci in the en~nonnient of
the CHANGE opetation A piopei implementation would execute the tugget code in the
en~ nonment of the box with the tnggei
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Lisp Object System, described in [18] )~objects. PCL, PCL/CLOS and the earlier Flavor
system provided important flexibility for the Boxer development platform. For the editor.
this fle’cihi1it~ i eniains unpot tant, liou e~ ci in t his implementation of the Boxem evaluatom
the speed expense of operations on CLOS objects outweighed the advantages.

In particular~ type predicates on CLOS objects, and indeed type predicates on almost
~in C mnnio~ Lisp object, ame i’nacc~ptabh slo~ Lay and I deudeci to umuf~ a new
e~aluatoi mepiesentation of objects with ins emeiging ~ntuai copy s~stem, and to base
the miew objects on Common Lisp structures. Even so. predicates on structures were
ullacceptal)iy slc>w. As this slowness is inherent in the design of the Conunon Lisp type
systems we decided to. move away from it.

Accoidingly the cential e~’aluatoi function almost completel~ limits the objects it deals
with to symbols, numbers, and vectors whose first element is a type symbol. With few
exceptions SYMBOLP and NUMBERP ame the only Common Lisp piedicates used in the e~al
uator. Case analysis is constructed such that these two predicates occur first, with the
implication that any object not one of these two t~ pes must be a ~ ectoi with its ty pe
symbol in slot zero.

The exceptional cases are in the routine that first examines the values of variables,
which may operate on any type of Boxer editor or evaluator object. In this case, a VECTORP
test precedes any calls to predicates of CLOS objects.1 Furthermore, the evaluator uses
implementation-specific “fast CLOS” predicate macros. These macros may assume that
then aiguments ~e CLOS objects and need not peifoim sub-ty pe checking Most CLOS
and Connuon Lisp implementations provide some facility for this kind of type checking.

6.2 Use of thern Efficiency Mechanisms

6.2.1 Copying

The single factor which slows down Boxer programs the most is the copy phase of the copy
and-execute model. As the Boxer execution model requires frequent copying of possibly
large data structures, aiiy savings in the speed and frequency of use of the box copy routine
will have a large effect on overall execution speed.

Abelson and Lay ha’~e developed a “vmitual cop’s ‘ algoiithm that meduces most fully
mecuisne copy opeiations to a top-le~el cops peifoimed once and cached until the fist
side-effect opezation [4] E~en so box copymg iemamns a potentially expensive opeiation
Some forum of block compilation with side-effect analysis could presumably eliminate almost
all unnecessary copying in a particular set of procedures. Boxer syntax, the lack of a
function/variable reference distinction, and the presence of dynamic scoping, however.
make it difficult to perform semantic analysis~ as no assumptions can be made about the
bindings of free variables, including most priiuitive names.2

‘Compilation macros detect systems in which VECTORP returns true on (‘LOS objects.
2For expediency, infix primitive functions are not re-definable.
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The design of the explicit control evaluator took into account the necessity of reducing
copying as much as possil)le. Previous Boxer compilers and evaluators had structural
problems which caused them to make multiple copies of procedure arguments and return
values.

The organization of the evaluator state machine makes it possible to handle each dif

ferent kind of value-producing expression separately. The distribution of data-type case
analysis throughout the evaluator has made it pOSSil)le to avoid successive, needless copies
of data, while preserving information necessary for creating ports.

For example, a DATA box returned by a procedure or primitive need not be copied.
unless it is bemg gathered as a PORT—TO flavored input.3 By contrast, a DATA box present
immediately in a program must be copied when encountered, unless there is a PORT—TO
flavor in effect, in which case a port should be niacle instead.

The iinplenientation-iflterflal DONT-COPY flavor inhibits copying arguments to Boxer
primitive functions which are guaranteed neither to mutate nor to return any portion of
their input, doing at least part of the job of a side-effect and copying analysis system.
Predicate And counting primitives, for example, make use of this flavor.

6.2.2 Flavored Inputs

Flavored inputs are implemented in a remarkably straightforward way, mirroring the de
sciiption in Section 4 1 The e’cphcit-conttol e~aluatoi has a senes of case anab ses in each
section of code in which values (from prinlitives4 procedures, or self-evaluating objects)
are produced. The cases are based on the current input flavor, and control the creation
of copies of, and ports to, the value. The input flavor of each argument is maintained in
a list with the argument in the AP.GLIST evaluator state varial)le. Each case handler is
constructed to look at the minimum number of cases; unhandiled cases default to copyimg.
As the COPY flavor (the default) is represented in the ARGLIST variable as the parameter
name symbol itself, this common case can be handled without any dispatch operation.

6.2.3 Arithmetic

.~. nunihei in Boxet is tepiesenteci as a hot containing a single, numenc woid Unhoxed
numerals may he thought of as objects that evaluate to Boxer numbers.4 A series of nuni
bets aliead~ inside a box ma~ be accessed inchviclualh with Bo’cei. data-selectot pinmti~ es
Since these operations do not perform de-reference, the conversion from numeric word to
Boxer number occurs automaticafly~5

The original implementation of numbers in Boxer followed this iniplementatioli closely.
That is, arithmetic primitives constructed and returned boxes containing numerals. A

3In this pathological case. a helpful message is also printed, telling the user that the port. is being made
to a copy.

4Iu fact. CHANGE 3 4 acts as if this were the case. See footnote 4 on page 15.
50f course. UNBOXing a Boxer iiumher is an error, but applying ~ results in another Boxer number.
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concession to efficiency was made in that numerals produced Lisp numbers when evalu
ateci. so- arithmetic primitives were required to accept either either boxed or unboxeci Lisp
numbers.

This recognition. bo~ang, and unboxnig of numbers made any operation involving num
hers quite slow. The new evaluator system removed all bo~dng and unhoxing from the
interpreter amid placed it in the primitives, and made the Lisp number be the preferred in
temnal foim Rathem thami ieqtuung arithmetic primitnes to bo’c numbeis, the new system
mequnes pnnuti~es that mequmie ho’ces as input to cieate them mntenialh if given numeric
inputs. As a result, - arithmetic operations became quite fast, and other data manipula
timi ~ as slowed do~ ii only by a Lisp NUMBERP check, wiuch is usualh only two machine
instructions in compiled Lisp code.

The case-analy sis mechanism of Sectmon6 1 1 makes possible the optimization of numbem
hotes into Lisp numbeis Specifically, foimal pai.ameteis bound to bame Lisp numbeis on
the dynamic variables association list do not have boxes associated with them. If the
inputs are of type PORT—TO, then the evaluator creates a new, virtual box, and binds the
parameter to a port to that bOx. Since this analysis hapj)eflS when the value is created.
the evaluatom can take action appiopilate to the paitKulai case Foi. etample t’. ping
CHANGE 3 4 causes a CHANGE operation on a port to a copy of a number box to take place;
however, it is impossible for any part of Boxer (outside the stepper) to determine that this
transaction has taken place. -

A more insidious case involving numbers and ports occurs when a procedure invokes
CHANGE on a foimal pamamnetem (not a local variable since they ah.eady ha~e ~ntual-copy
boxes associated with them) of a procedure. The PORT—TO case of the SYMBOL handiler in
the e~ aluatom notices tins piecise opeiation, and meplaces the bame numhei. oii the d~ nanuc
~ana1)ies list with a viituai copy mepiesenting a bo’ced numl)ei Iuclucti~’el~, it is guamanteeci
that there is no prior reference to this variable still extant, - since any such reference would
have come from a PORT—TO flavor - (and we have shown that the only other such case results
in the value being discarded.) - -

6.2.4 Variable Lookup and Cache

With a stiaightfoiwaid static-~anable lookup scheme etecution time of Boxem piogiams
increases dramatically with nesting level.

Initially, static lookup ~as implemented as one association-list lookup pem hot corn
bnied with iecuisr~~e Lisp fla’~oi6 message calls to the supeiioi hot A fist att~ mpt at
making static lookup fastem mnvohed adding fla~oi methods to maintain a series of associ
ation lists beginrnng in each box and reaching upwards to the outermost box. However.
e~ en with the etpechent of eliminating fla~ oi calls, static lookup tune was unacceptabl~
slow, and still varied with box nesting level.

Accordingly, Abelson and I decided to implement a caching scheme for static-variable

6The Lisp Machine Flavor System is a predecessor to the current Common Lisp Object System. Message
invocations are more time—consuming than function calls. See [24]. -
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lookup. Since the static context of an evaluation remains constant (except during brief
operations such as TELL), we were able to develop an algorithm that reduces static-variable
lookup to a single association—list lookup. The algorithm is niclependent of the design of
the explicit—control evaluator, and was initially tested with the Lay evaluator.

The Cache Algorithm The Lisp objects associated with Boxer variables normally re
main constant from evaluation to evaluation. For example, the Boxer CHANGE mutation
operator does not change the identity of the underlying box implementation objects, only
their contents. Furthermore, the shadowing of a previously cached variable by dynamic
scoping would not affect the cached value of any static variable cacheing scheme, as dy—
uanñc lookup happens before static lookup.

For these reasons, we decided to create a static variable cache in each box which is used
as a static-variables root. That is, each box in which the doit key is pressed or a TELL or
port-execution operation is done contains a cache which maps variable names to boxes for
all static variables referred to in procedures invoked during the evaluation. Variables not
found in the cache are searched for in the regular box hierarchy, amid cached if appropriate.

linpiementing the cache required the addition of two new internal data structures, the
static-variable object and the static-variable-cache-entry object.

A static—variable is a structure which is a list of a variable name, the editor box
ol)jeCt which is the value, and a unique ID. Static variables are represented internally in
boxer by these static—variable objects, whether they he in the static—variables
—alist of a box or in the global Lisp value cells entries of primitives.

Each static-variable cache is implemented as an association list: the stat ic—variables—
cache. The cache is a list of static—variable—cache-entry objects. A static—variable—
cache—entry object is a structure of type list. It contains the variable name, a unique ID,
and a pointer to the static-variable object which it caches.

Given a variable name, the cache lookup function performs an association list lookup omi
the static—variable—cache list. (The variable name is defined to be the the first element
of the static—variable—cache—entry object to pernut the use of a fast association list
lookup function.) The cache lookup function then compares the unique ID of the resulting
static—variable—cache—entry object with the unique ID of the static—variable object
pointed to by that cache entry. If the two do not match. then the cached entry is invalid.
As some special unique ID values are used for particular conditions, the algorithm examines
the errant value to determine what course of action to take.

Deleting a named box (i.e., a variable) from a box by an editor operation or a muta
tion primitive causes the corresponding static—variable object’s unique ID to be set to
deleted—variable—uid. It is the responsibility of the editor to call an evaluator-supplied
function on each named box which is about to be removed from the box hierarchy; that
function hamidiles any cache deletion marking. When the cache lookup algorithm encounters
a reference to a variable which has been deleted from the Boxer hierarchy but which is still
present in the cache, it removes the entry from the cache and allows regular (non-cache)
static variable hookup to proceed.
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The case of adding a new variable of the same name as an already cached variable
to a level of box nesting which should cause the cache entry to become invalid is also
easily handled, once the necessity for handling this case is recognized. The Scheme lexical
variable reference compilation algorithm’ handles this case. In the Boxer algorithm, adding
a variable to a. box causes the next outermost variable with the same name to 1)e given a
new uniclue ID. The entry for the iaame in the static variables cache, however, still points
to both the old variable aiid its former unique id. On the next reference to that variable.
the ID mismatch will be discovered, and the variable re-cached. As with deletion of a
variable, addition is haiidled by having the editor call evaluator—supplied functions.

Changing a variable name is not considered a separate action; the editor is required to
notify the evaluator of the deletion of one variable and the addition of another.

Copying a box does not copy the static variables cache.
Deleting a box empties the static-variables—cache list of that l)OX and the cache of

all its inferior boxes, since that box might be inserted directly into the Boxer hierarchy in
some other place.8

Some variables need to be exempt from caching. The values of the functions associated
with key- and mouse events, for instance, are numerous, frequently called, and not time
dependent. Were they to be cached, the cache would quickly become full with the functions
key- aiid mouse-event functions, and cached-variable lookup would no longer be faster
than normal variable reference. If the unique ID of a static-variable is non-caching—
variable—uid, then the algorithm never caches the variable.

Future Cache Efficiency Issues In the current implementation, outside of wholesale
invalidation, cache entries for subsequently deleted variables are removed from the cache
only when the variables are referred to. This restriction is an unfortunate one, since
deleted variables are generally not used except in errant code. In the future, a global
sweep operation which removes these dead cache entries might be useful. This deficiency
is not as much of a problem as it might be, however, as these caches are not saved across
Boxer sessions. Furthermore, the cache of a box is emptied if it or its superior is removed
from the hierarchy, even temporarily.

An adaptive tradeoff algorithm which places an upper limit on the number of cache
entries might he useful. The present algorithm simply caches every static reference on the
assumption that the overhead of manipulating the cache any further would overwhelm any
advantages.

TPersona.l communication, H. Abelson
8Presently, Boxer uses an EMACS-like kill ring. where objects recentLy deleted by editor commands are

stored for possible retrieval. These objects are, however, outside the Boxer hierarchy. Future changes in the
editor may make the kill rilig he a part of the hierarchy. in which case this operation will be handled perforce
as a deletion and addition.
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Chapter 7

Data-Manipulation Primitives

This chapter discusses the design and efficient implementation of certain data manipulation
functions in Boxer. Figure 5.1 shows that the Boxer principle of naïve realism and the use
of the spatial nietaphor had a strong influence on the definition of data manipulation
primitives.

The choice of an explicit-control evaluator has complicated the definitions of primitives
which perform recursive evaluations. The primitives described in this chapter make exten
sive use of the recursive-evaluation mechanism for the efficient solution of problems posed
by design constraints of Boxer.

7.1 BUILD

This section describes the efficiency issues in the implementation of the BUILD primitive
of Section 2.2.

The BUILD primitive is a spatially-oriented data constructor based on the concept of a
templa.~e. BUILD is a descendent of a series of similar operators designed by the Boxer group.
Michael Eisenberg implemented the first modern BUILD function, and is responsible, with
diSessa, for many of its basic features. Scliweiker and Muthig[16] showed that programming
novices were able to use BUILD three times faster than the Logo data constructor primitives.
As an excellent discussion of BUILD is available elsewhere[11], this section discuss only the
implementation and unusual cases.

The present BUILD primitive takes a single input, which is a DATA box, and outputs
another DATA box which is on the surface very similar to the input box. The output box
differs from the input box in that all expressions preceded by the ! (doi~) character are
evaluated, and all preceded by the Q (unbox) character are evaluated and unboxed. All
other boxes and words remain the same.

Early implementations of BUILD were slow. Analysis showed that template parsing
took most of the time. As part of the new evaluator system. I developed a BUILD compiler
to speed up the BUILD operation.
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Figure 7.1: Examples of BUILD.

The implementation of BUILD is divided into two paits a template waIkei. and a com

piler. The walker, clue to~ Lay. recursively examines the template argument and constructs
a Lisp function which takes a series of arguments and produces the Boxer object which
BUILD returns. The arguments are the objects which are the result of the ! aiicl ~ evalua
tions. The walker also returns a list of the Boxer expressions to be evaluated, that is. the
expressions which followed the special characters in the BUILD template.

The BUILD compilet pait of the e~aluatoi system cieates an inteinal Bo’cei. pnnutne
which takes takes the e~aluated aigitments and passes them to the Lisp function ietuinecl
lY~ the BUILD v~ralkei The BUILD piinutive itself is meiely a macio (iecuisr~e e~al prinutne)
that e’cpands into a call to this inteiiial pumitne with its aigunients

Nesting and combination of BUILD special chaiacteis I and ~ is allowed Since these
opeiations may iesult in multiple, successne e~aluations, a stiaightfoiwaicl implementation
of BUILD v~,otilcl mnteilea’~e tins e’~aluation ~ith the constmuction of the BUILD mesult

The ~ chaiactei in BUILD opemates by “unbo’cing the bo’c it is gr’ven If that opemation
tesults in multiple iows, the iov~s aftet the fist cue combined ~~‘ith the succeeding mows of
the original template structure. If any of the resulting elements are DOlT boxes, they are
evaluated, and their results inserted into the result. In the case of multiple ~ characters,
all but the last level of ~ are handled by direct insertion of ~ primitive into the expressions
to be evaluated.

Figure 7.1 shows an example of a simple use of BUILD and a pathological case involving
automatic ~ e’cecution of a pioceclume side effects of e’ctei.nal ~anahles, and ptesei~ation
of order of evaluation.

ONE TWO 4
DATA DATA DATA

Y ___I IDATAI

The following commands were executed in sequence:

I!X and !yIBUILD __________I DATA I

BUILD flATA~

TWO~ and LDATAI~

DATA

ONE TWO and 3~
DATA

BUILD IDATA ~
DATA

h~1l~j
DATA

47



Bugs Named boxes inside the template appear correctly in the result of BUILD, but are
not availal)le for reference during the execution of any BUILD expressions. Note that this
constraint runs counter to the Boxer intuitive notion of variable scoping, and is primarily
an implementation- dependent artifact.

7.2 ©

The ~ operator of the BUILD primitive is also available as a general programming construct
in Boxer. It is described in Section 2.2.

The ~ primitive is more thaii a de-reference operator. It is designed to act like the
BUILD primitive ~ special character, only inside Boxer code. That is, an ~ followed by
a box or variable name first causes that item to be evaluated according to the normal
evaluation rules. The cordents of the resulting box are then used in place of the ~ and its
following item. (If there is more thaia one row, the rows are concatenated end-to-end.’)

In this sense, ~ is like the Common Lisp #. reader macro, which substitutes the result
of the following expression into the code. hi Boxer, however, the substitution happens
at run time. Therefore, it more nearly resembles the MIT PDP-1O TECO2 C—] (control
right bracket) operator, which performs the same run-time substitution. As Boxer differs
in s’~ utax and semantics item TECO ~ the piecise meaning of the command is diffejent ‘~

If ~ is used on something that e’~ aluates to a DATA box containing only one element
itself a data box, then the heha~ioi is the same as UNBOX of the same aigunient This is
tine because DAI’A boxes ate self-e~aluating so the extia e~aluation ~~luch ~ intioduces
has no effect howet ei, if the aigument contains moie than one DAI’A box, the iesult is
the last DATA box If such an Q combination occms in a place wheie multiple inputs aie
expected each DATA box will piovide one input Fuitheimoie, a box that contains DOlT

boxes ot names will cause the execution of the DOlT boxes 01 named p1ogiams~
A stiaightfoiwaad apphcation of the Boxei. piogiamnung model obtains all these te

stilts inimediatel~, and is much mote instiucti’~e than the case-b3 -case anal~ sis gnen heie
hio’c~ e’~ et this anal3 sis is piesented because e~ en if the undeilying implementation does
not correspond exactly to the specification in the model, it must exhibit the appropriate
behavioi. As it happens, Q is implemented as a pnuutr~e opei ation that takes one input,
uith no special input fiavoi It then copies the contents of its input concatenating iov~ s
and gi~ es the evaluatoi. a list of commands to be executed

‘This particular behavior is still open to debate but no better meaning ha.s been determined
2PDP-1O ‘IECO the Text Editing and (oriection system, is the language in ~liich the popular EMA~S

editor was first written. MIT PDP-1O TECO is not documented; PDP-6 TECO, its predecessor, is described
iii [27].

3Thougb perhaps not in spirit Boxer ~s a language for operating on boxes, an(1 its programs are boxes
It integrates the programming language and the editor. TECO is a language for operating on characters;
its primitive operators are single characters. and its programs are strings of characters. PDP-1O EMAc’S,
which is essentially a huge ‘l’ECO program is even closer t.o the Boxer idea. of an integrated system.

~1ii EMACS. the precise meaning of the command is affected by whether overwrite mode is in effect.
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One behavior of ® that has proveii difficult to implement is the interaction between ~
and boxes containing tiamed boxes. By the Boxer evaluation model, using ~ to unbox a
box containing named variables should result iii the introduction of those named boxes
nito the currently—executing DOlT box. At top level, the editor perfornis this operation
correctly; however, the evaluator does not presently implement it.

7.3 TELL

TELL is the primary means for accessing and changing under program control the van
al)les in a 1)OX other than the current one. Similarly, TELL is used for ol)ject—oriented
programming in Boxer.

Since the name TELL sounds declarative, Boxer provides the more interrogatory ASK
synonym for the evaluation of variables and expressions that execute without side effect.

TELL requires two inputs: the first is a box or port. and the second is a series of Boxer
commands, ending at the end of the row. TELL then executes the commands as if they
had been typed in the argument box at top level. ~ The value of the tell is the value, if any.
returned by the last command.

TELL and BUILD-Flavored Inputs Since the local variables of the DOlT box which
invokes TELL are not accessible to the coniinaucls which TELL is executing, some mechanism
must be provided for passing in data to those commands. The present implementatioii of
Boxer maintains the fiction that the second input to TELL is “BUILD-flavored.” This
means that the regular BUILD characters ~ and are availal)le, and that a BUILD operation
is clone in the environment of the caller. Thus, it is possible to pass in values of variables
in the callers environment by preceding theni with the ! character.

Lately, this interpretation has fallen into disfavor. The implementation section below
shows that TELL maintains a pair of previous environment variables, which are queried to
obtain the value of any expression which is preceded by an ! character, whether on a TELL
line or not. Unfortunately. this means that lines inside procedures invoked indirectly by
TELL also have access to the variables in the scope of the TELL command itself.

A new proposal6 offers the primitives MY and YOUR, which make legitimate the above
behavior, and allow explicit specification of which variable is asked for in the TELL line.
Although the implementation is straightforward, no integration with the Boxer model has
yet 1)een developed. Also, it is not clear which primitive should refer to which environ
ment.. At first glaiice, MY appears to mean the TELL environment, and YOUR the distant
box: however, by the time the commands actually get executed, they will be executing
in the distant environment. Texas Instruments Logo 99/4 faced similar problems: the

5Not.e that. this is top level as defined in the Boxer model: see the implementation section for a. fuller
discussion of this subtle point.

6A. diSessa.. personal communication. January 9. 1989. -
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MYNUMBER primitive, which returned the number of the current sprite (turtle), was changed
to YOURNUMBER by TI staff (and further shortened to the cryptic YN).

Implementation TELL and its synonym ASK are implemented as recursive evaluation
primitives. The first input is PORT—TO flavored, and the second input is commands forming
the remainder of the line. TELL executes the coluniancis as if they had been typed in the
argument box at top level. That is, it binds the DYNAMIC—VARIABLES—ROOT to NIL and the
STATIC—VARIABLES—ROOT to the new box, causes evaluation of the commands, and restores
the state varial)leS.

Multiple ! characters in TELL arguments are handled by an entry in the PDL stack frame
for TELL which contains a pointer to the previous TELL frame. Each successive ! character
causes the variable lookup mechanism (or MY primitive, in future implementations) to back
up one level of TELL function calling.
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Chapter 8

Conclusion

Boxer is an integrated computing environment for naïve computer users. The integration
has made some parts of the implementation difficult. but has also made other parts easier.
That Boxer is intended for naïve users called for a re-thinking of all aspects of traditional
programming languages. This re-thinking has been a continuing process, involving a cycle
of theorizing, discussion, testing, and implementation involving many people and taking
over five years.

The development of the Boxer model of computation, proposed by Profs. diSessa and
Abelson. has directly guided the implementation of the language. Yet many parts of it
were, and some still remain, open to interpretation. In those cases, we have tried to appeal
to the higher level Boxer principles, and where that failed, we adopted an experimental
attitude.

The difficulties of creating the programming language Boxer lie to some degree in this
interpretation. hut in recent years have been more in the implementation of a language
which is true to its model and at the same time which provides the functionality that users
need. Half of the difficulty is the proper fitting of the language model and the model for
the auxiliary concepts; that is, the concrete model of variables, the semi-magical aspects
of flavored inpttts, and so on.

The other half of the difficulty is the actual implementation of an interpreter true to
the model of execution. A process of give and take with definition of model, and with
the definition of and interaction with the rest of the integrated system has been the rule.
rather than the exception.
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